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Thermodynamic basis for a variational model for crystal growth
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Variational models provide an alternative approach to standard sharp interface models for calculating the
motion of phase boundaries during solidification. We present a correspondence between objective functions
used in variational simulations and specific thermodynamic functions. We demonstrate that variational models
with the proposed identification of variables are consistent with nonequilibrium thermodynamics. Variational
models are derived for solidification of a pure material and then generalized to obtain a model for solidification
of a binary alloy. Conservation laws for internal energy and chemical species and the law of local entropy
production are expressed in integral form and used to develop variational principles in which a “free energy,”
which includes an interfacial contribution, is shown to be a decreasing function of time. This free energy takes
on its minimum value over any short time interval, subject to the laws of conservation of internal energy and
chemical species. A variational simulation based on this model is described, and shown for small time intervals
to provide the Gibbs-Thomson boundary condition at the solid-liquid interf&¥063-651X99)02307-1

PACS numbeps): 81.10.Aj, 05.70.Ln, 02.76:c, 64.70.Dv

I. INTRODUCTION Variational simulations are well suited to massively par-

allel computation and do not require such careful tracking of

In computational modeling of crystal growth, standardthe interface as one would need for sharp interface models to
sharp interface models are very cumbersome to solve nigompute the interface curvature by some combination of lo-
merically. This arises because the crystal-melt interface is &2l curve fitting and interpolation. An advantage of varia-
free boundary that must be tracked by some numerica| a|gd.i.0.na| Simulati0n§ from a theoretical Standp(})int is that the
rithm with an accuracy necessary to Compute its Curvatur&’|bbS'Thomson interfacial boundary condition results di-
on which its local equilibrium conditiongemperature and rectly from the minimization of a free energy, which is its

composition depend. Alternative models are being devel-underlying basis.

Oped that are more efﬁcient for numerica' Computations_ We derive variational models for the solidification of a
The phase-field model has received considerable attentio?Hre material and the solidification of a binary alloy. Two
because of its basis in the fundamental laws of irreversibl&/€rsions of the variational model are derived in each case: a

thermodynamics, and because phase-field simulations can B&adratic and a linear mode!.
used to compute crystal shapes quite complex in comparison
with those obtained from numerical solutions to standard
sharp interface mode[d-6]. ) ) ]
Variational models are another alternative. In variational Consider a volume occupied by two phages., a solid
models, one minimizes a “free energy,” subject to conser-Crystal and its liquid mejtseparated by an interface. We
vation conditions, to determine the position of the solid-treat a subvolum¥ contained within a surface,,, that may
liquid interface, and in a separate step solves the diffusiofclude a portion of the interface. The intersections of the
equation for temperature or chemical potential in the bulkSolid, liquid, and interface with/ are calledVs, V., and
By iterating these two steps, one can compute the time evdsL, respectively. o
lution of a solid-liquid interface. Variational simulations for A dimensionless potential field represents a temperature
the solidification of a pure material were proposed andield in the case of a pure substance and a chemical potential
implemented by one of the present authpfs Roosen and field in the case of a binary alloy. In the variational models
Taylor [8] and Taylor[9—11] used similar principles to de- and in the standard sharp interface models, a solution of
velop simulations of the evolution of interfaces with crystal- the diffusion equation,
line (faceted surface energies. These simulations were based
on a mathematical connection to standard sharp interface
models. In this paper, a thermodynamic basis for variational
models is presented and generalized to include alloy solidiin the bulk solid and liquid. The dot above a variable denotes
fication. partial differentiation with respect to dimensionless time.
Later we consider a coordinate system that is moving in
the z direction with nondimensional speed 1 with respect to
*Present address: MEMC Electronic Materials Inc., Saint Petersthe crystal, in which case the bulk fields obey a diffusion
MO 63376. equation of the form

A. Some notation

u=V3u, 1
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au
u=vVau+—. 2) f=f fdv+f fXSd A, (5
0z v AsL
For both the variational models and standard sharp interfaGg, i1 is minimized over all possible new interface configu-

(rjnf(;de_ls, the bulk f'ilds r?re deée:m:jr?fe;d by T]S°|Ut'°?] of Lherations, subject to a conservation constraint. The quahiity
Iffusion equation, but the models differ in the way that the i ensionless bulk energy density that is a specified func-
boundary conditions at the crystal-melt interface are treate ion of the potential fields, and f* is a dimensionless free-

energy density of the crystal-melt interface, and can depend

B. Standard sharp interface models on its orientation.
In standard sharp interface modalsis continuous at the ~ The difference flux plays an important role in the minimi-
solid-liquid interface and takes on the value zation of . At the beginning of an iteration step, the bulk
field and the interface position are in a configuration we will
u=Tt=—(FS+fHK, (3)  call A After the bulk diffusion stefstep 3 has been com-

pleted, the system is in configurati@ which has interface
wherel is a reference potential that can frequently be takerposition and configuration correspondingAdut a new po-
to be zero,f*® is proportional to an excess interfacial free tential field due to diffusion for a time\t. ConfigurationB
energy, anK is the dimensionless curvature of the interface.is, therefore, an intermediate configuration not necessarily
Sincef*®is assumed to depend on the surface orientation, theepresenting the physical system configuration at any time.
notation ¢*5+f%3)K, which would be correct in two dimen- To obtain the actual configuratioB one must minimize#
sions, is a symbolic representation fc)‘l"~°(+fﬁiﬁl)KlJr(fxS with respect to all interface positions and configurations.

+f}§202)K2, which applies in three dimensions. Tidesub- During the minimizing process, one might try configuration

. . . . B’ that differs from configuratiorB in the location of the
scripts represent differentiation bivith respect ta, and the interface, and in the potential field. The potential field Bdr

subscrlpts_l _and 2 identify angles between_ the normal anlds the sum of the potential field associated with configuration
the two principal axes of curvature for the interface. Equa-, . . . :
. . . .~ B and the new potential associated with the difference flux.
tion (3) is often referred to as the Gibbs-Thomson equation b . .
. ) " The new potential is determined by taking each volume ele-
There is also a conservation condition at the crystal-melt h Id ch h it th |
interface of the form ment that would change phase if the system were to evolve
from B to B’ and distributing the released potentiaf with-
V,=[VuS—Vu']-n, (4  drawing the absorbed potential in the case of meltinga
small neighborhood of approximate dimensionless radius
whereV, is the dimensionless local normal growth speed,\/A_t of all volume elements that have changed phase. Thus
andn is the normal to the interface pointing into the liquid. any volume that changes phase can only affect the bulk po-
Equation(4) applies when the thermal conductivities in solid tential in a local neighborhood whose size is determined by
and liquid are equal, which is an approximation we discusg\t. By distributing potential in a small but finite neighbor-
later. hood of material that has changed phase, one accounts for
Equation(1) or (2), subject to the boundary conditio(® the diffusion that would take place between the time of the
and (4) on Ag, with Neumann, Dirichlet, or other suitable phase transformation, assumed to be intermediateatal t
conditions on the external boundary, constitute a mathemati+ At, and the end of the time steptat At. After determin-
cally well-posed model for the evolution of crystal shapes. ing configurationB’ (interface position and new bulk field
one can computét for B’, and compare it with that foB.
C. Variational models By trying a large number of possible interface configura-
tions, one can find that configuration that minimizE€sand

In variational models, the process of determining the eVO0iake that as the updated system configuratat time t

Iyuon_ the interface position and_p_otent_lal field over a short+ At. This configuration will be configuratioA for the next
time interval fromt to t+ At, is divided into two computa- iteration
Ell_cr)]nal sttepts:l(;_) l%mk dIfthSIOI’I atnd (”f) mte:_fg?_e Totmr;. Several variational models, for whidhdepends onu in

e potential field(e.g., temperature for solidification of a various ways, are described in this paper. The derivations

pure materigl can change during both steps. resented below treat only the variational stefep 2 of the
In the _first step, fche bulk_ fields are computed by aHOWingglgorihm discussed abovg. For each model, thl?a law of posi-
heat to diffuse for time\t without regard to the presence of tive local entropy production and conservation laffe in-

a solid-liquid interface, and the interface position does not, | energy and/or chemical spegiage used to show that
change. In the second step, the interface can change position.

The bulk field changes in the second step only to account for
the change in potential due to motion of the interfeeg., to

account for latent heat in the case of a pure maferietie The conservation condition that we will apply to step 2 is
flux of potential associated with the motion of the interface is . . PPy P .
sed to determine the difference flux and can be expressed in

called the difference flux, because it results from a differencj"he form
between solid and liquid equilibrium values of a conserve
quantity, such as internal energy.

In the second step, the new interface position is found by f VndA:f adv, )
the minimization of a total energy% of the form Agy Y%

dFt<0. (6)
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whereV,, is the normal growth speed of the interface, andtain standard sharp interface modglg—16.
results from a statement of conservation of the quantity for
which u is the conjugate potential. For example,uifis a A. Energy conservation and entropy production
dimensionless temperature, the conservation condition is a
statement of the conservation of energy accounting for th
latent heat of solidification.

A variational model in the limitAt—0 and a standard

sharp interface model will both impose the Gibbs-Thomson — f esdv+f eLdV+f eXSdA}:—f jor NoudA,
boundary condition fou at the crystal-melt interface. t]Jvs Vi AsL A

out (8)

wheree is the internal energy density, is the internal en-
It is assumed that the materials being modeled are rigiergy flux, andng is the outward pointing normal té.,.
and of constant density, so that transport is purely diffusiveThe superscriptS, L, andxs hereafter denote, respectively,
(i.e., no convection We adopt a symmetric model, for the solid, liquid, and surface excess of the quantity.
which the appropriate transport coefficients in solid and lig- Equation(8) can be rewritten by applying the time deriva-
uid are equal, which greatly simplifies the calculations and igive on the left-hand side to obtain
essential for the derivation of the variational model. For the
solidification of a pure material, the thermal diffusion coef- f ésdv+f
ficients in solid and liquid can be of comparable magnitude, Vs
but are usually not equal. For metals, they differ typically by
a factor of 2, and for ice and water by approximatelyl2].
For chemical diffusion in a binary mixture, the diffusion co-
efficient in the solid is typically three or four orders of mag-

The law of conservation of energy can be expressed in the
orm

D. Approximations

é'—dv+f (eS—e" )V, dA
Vi AsL
+f (e*5+ e§§)KVndA+f edA

SL

nitude smaller than that in the liquid, so the assumption of _ . A 9
equal diffusion coefficients is incorrect for this case. A more = OUIJe' Noud A, C)
appropriate approximation would be to assume that the dif-

fusion coefficient in the solid is zero. whereK is the interfacial curvature, and the dot)(above a

There exist systems for which the diffusion coefficients inyariable represents partial differentiation with respect to
solid and ||CIU|d are Comparable, and to which the mathematitime_ The excess internal energy density may be a function
cal formulation presented in Sec. Il may be applied. In theof the orientation of the interface, and may depend explicitly
experimental work of Melo and Oswald 3], in which they  gn time.
study the directional growth of a liquid crystal phase into |n pulk solid or bulk liquid(no Ag,), Eq. (9) can be re-
another one, the diffusion coefficients in the two phases difyyced to differential form by using the divergence theorem

fer by roughly a factor of 2. o on the right-hand side and shrinkingto a point, resulting in
Another consideration is the relative importance of the
transport coefficient in the solid to the overall behavior of e=—V-j,. (10)

some systems. For a pure material growing freely into a su-

percooled liquid, one can argue that the solid is nearly iso- |f, instead, one shrink® to a portion of the interface,
thermal because the temperature gradients that occur in theen shrinks that interfacial area to a point, the conservation
solid are due solely to the effects of capillarity on the inter-condition becomes

facial temperature. Almost independent of what value one

chooses for the thermal conductivity in the solid, most of the (eS—eh)Vp+ (e5+ 5KV, +e5=[j3—j5]-n, (12
heat transport that leads to growth comes from the much

larger temperature gradients in the liquid. The choice of therwheren is the unit normal toAg, pointing into the liquid,
mal diffusion coefficient for the solid in such cases would andjs andjlé are the internal energy fluxes in the solid and
not dramatically affect the behavior of the system. By thejiquid, respectively.

same argument, choosing a finite diffusion coefficient in  The second law of thermodynamicpositive local en-
solid should not give rise to significant material fluxes, pro-tropy production for this system can be written
vided that the gradients in solid are small compared to those
in the liquid. d

Although the approximation of equal transport coeffi- dat fv sSdV+ fv stdv+ fA s"sdA}
cients in solid and liquid limit the applicability of the model, S L St

we claim that one can obtain some meaningful insight into _ B B
the process of crystal growth, and proceed with these issues == f Js*NoudA+ f Sdv+ f 5°dA, (12
in mind. Aout v Ast

wheres is the entropy densityj is the entropy fluxg, and

3 are the local rates of entropy production per unit volume
We first treat a variational model of solidification of a in the bulk, and on the interface, respectively. These quanti-

pure material from its melt in the absence of convectionties must always satisf§ =0 and3;°=0, where the equal

Derivations that use the same basic laws can be used to obign applies only to a hypothetical reversible process.

II. SOLIDIFICATION OF A PURE MATERIAL
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By applying the time derivative on the left-hand side of

Eqg. (12) one obtains
j 'ssdv+j 'sLdv+J (sS—sh)V,dA
Vs Vi AsL

+J (s"s+s§§)KVndA+f S*dA
AsL

Asi

f A,
AsL

—f js-nougA+f§,dv+ (13
Aout \

Equation(12) can also be reduced in bulk to an equation

which is similar to Eq(10) with an extra entropy production
term,

§=—-V.j+5, (14
and on the interface,

(S5 SH )Vt (S5+ SJ5) KV, + 5= [[S—]5]- n+3[°.
(15)

B. Variational models
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_T.\2
T, (T-Tmw"

(19

Sincef(T,,) andc, are independent of phasg, is inde-
pendent of phase at any given valueTof

Next, consider the thermodynamic laws. Multiplying Eg.
(12 by T,,, subtracting that product from E¢B), and using
je=Tjs, ONe obtains

T
F FXS _ _ My
fvfdeJr JAs,LfmdA}_ JAout(l T )]e ndA

f’é,dV%—J ”S'i(SdA},
v AsL

(20

d
dt

_Tm

whereV=Vg+V, .

For a perturbation of a small portion of the solid-liquid
interface, the surfacé,; may be placed far enough away
that the difference flux from the motion éf5, will not reach
Aot In @ short time intervaldt, leading toj.-n=0 on Agy;.

By applying Eq.(20) over a small time intervaAt and to a
small volumeV that, however, is sufficiently large that
je:n=0 on A, substituting the nondimensionalized tem-

The variational models to be derived here for the pureperatureu=(T—T,,)/(L,/c,), using the expandef}, from

material were proposed previoudly] and motivated intu-

Eqg. (18) and keeping terms to second orderunEg. (20)

itively based on the mathematical structure of the problem.pbecomes

If the heat capacities per unit voluneg in the solid and

temperature, then the internal energy density

in the liquid are assumed to be equal and independent of thg 1
- f E U2d V+
\%

eSt=c,(T-Tn +ex", (16)

where the quantitiegj" are constants for whicke;—e5
=L, , wherelL, is the latent heat of fusion per unit volume.
Becausale=Tds one can write

sSt=c, In(T/Ty)+s5", (17)
wheres3" are constants for whick;—sy=L, /Tp,.

1. Quadratic objective function

Consider a free-energy density defined fhy=e—T s,
which differs from the Helmholtz free-energy densify=e

—Ts, in that the temperature that multiplies the entropy is

FXS

m
—dA
J'ASL €

-
:_—m{f’é,dv+f ’é,XSdA],
E|Jv AgL

where the energy density parameteréis L2/(c,T,), and

dt

(21)

where length variables have been rescaled by a characteristic

length| and time byl?/ k, wherex is the thermal diffusion
coefficient.

Substituting Eq(16) into Eq.(9), assuming thaj,=0 on
Ao and neglecting the terms containimeg®+ e}, and *°
because €°+e};) K<L, ande*9/V,<L,, one obtains

f udv— f V,dA=0. (22)
\Y Asp

constant, the melting temperature for a planar interface. The By defining the objective functionf=u?/2 and f*°

surface excess of this energy is simpfj=e*5— T,,,s*.
By expandingf ,,(T) aboutT,,, one finds to second order,

~ ~ of &f
fm(T) = fm(Tm) +t—

197y
it (T-Tw)+

57z (T-Tw)?
2 am?|,

m

oo (18)

=T*%¢&, Egs.(21) and(22) can be rewritten in the form of
Egs.(6) and(7), respectively. In addition, the bulk fields
must satisfy the diffusion equatiofl). Therefore, a model
based on Eq¥6), (7), and(1) is consistent with the first and
second laws of thermodynamics.

2. Linear objective function

In this alternative variational formulation, an objective

The first term in the expansion is the Helmholtz free energyfunction f that has a different dependence ons defined.
at the melting temperature. The second term is zero, becausksing Egs.(16) and (17), one can write

de=Tds, and because the derivative is evaluatedat The
third term can be evaluated and is found to be

FS-FH=[(T/Tp) — 1]L,=E, 23
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wheref =e— Tsis the true Helmholtz free energy, ancind  servation. Whether such a quantity decreases globally for the
& are given in the previous section. entire variational algorithm for ahermally insulated system

Multiplying Eq. (15) by T and subtracting the product depends on how behaves when the potential field diffuses.
from Eq. (11), then integrating the result over a portion of Existence of a quantity that decreases globally in time has
the interface, one obtains certain theoretical advantagels’], though it is not necessary

for practical computations.
"f'XS+~§3 1 To understand this, we return to the variational algorithm
j UVp+ ——=— KV, dA=— EJ TSdA, presented in the Introduction. At the end of step 1, the inter-
AsL AsL 24 mediate configuration iB and has the same interface geom-
(24) etry asA, but differs by diffusion of the potential. In the
minimization step, we consider a variety of configurations
B’ in an attempt to minimizeF. Let C be the final minimiz-
ing configuration. Now, sincB is one of the candidate mini-
mizers in step 2, we certainly havg C)<(B). We shall
u/2 in solid call F a global decreaselif we can guarantee that(C)
{—u/2 in liquid. (25 <F(A); that is, if F necessarily decreases from one time
step to the next. Clearly, this will be the caseZfis de-
One can write creased in the diffusion step of the algorithm, for then we
have F(B)<F(A) and F is a global decreaser.

d of i i
J’ fdv= j " dv+ f UV, dA. Negative entropy, for example, is a global decreaser. Note
\% Y% AsL

wheref*s= (€*5—Ts*9) is the surface excess Helmholtz free
energy, which is assumed not to depend explicitly on time.
Consider an objective function

dt ot that the entropy of bulk solid or liquid is a concave down-
ward function of the internal energy, and hence the tempera-
Substituting this into Eq(24), and recalling tha°=0, one  ture, for constant specific heat, which we have assumed.
finds Thermal diffusion drives an insulated system toward a sys-

_ tem average temperature and the total integrated entropy to
fxs 1
f fdv+f —dA f Udv—f udv
v s € Vi Vs

N larger values. Negative entropy is also a global decreaser
dt 2

when multiple phases are considered. The disadvantage of
(26) the entropy in the context of variational algorithms is that it
is not continuous at the solid-liquid interface.

where the time derivative of*® was moved outside of the ~ The Helmholtz free energy is not a global decreaser, and

integral in the second term of E¢4) to obtain Eq.(26) neither is the linear objective function derived from it. This

[14]. is why we have introduced the objective functifyp, which
Because the latent heat is distributed isotropicélydi- is a global decreaser, and which is continuous at the solid-

rect result of the assumption of equal transport coefficients ifiquid interface; the quadratic functional derived frdm in-

solid and liquid, the third and fourth terms on the left-hand herits these characteristics.

side of Eq.(26) reduce approximately to a constant times the

diff_erence in volgmes_occupied by solid and I_iquid in the IIl. SOLIDIFICATION OF A BINARY ALLOY

regionV. AssumingV is a sphere of small radius,, the

fractional difference in volume between solid and liquid is We develop our variational model of solidification of a

proportional tor,K. By choosingr,<R, whereR is the binary alloy by adding the conservation of material species

radius of curvature of the interface, one can neglect the surip the previous laws. This model is also applicable to the

of the third and fourth terms in E426) [7]. Setting the sum isothermal precipitation of a crystal with different composi-

of these terms equal to zero is equivalent to assuming thaion from that of the solution from which it grows.

the conjugate variablénergy associated with the potential

u released because of the phase transformation is approxi-

mately equally distributed between the solid and liquid. Thus . o

we obtain the approximate inequality, The law of conservation of material is

dev_l_f f_XSdA f CiSdV'f'f C:‘dV'i‘f C?(SdA}Z—JA Jis Noud A,
v ne € Vg A AgL A

out
(28)

Using the same nondimensionalization of the position and
time variables that was used for the quadratic case(Zgy.  Wherec; is the local concentratiofnumber per unit volume
takes the form of Eq(6) wheref is given by Eq.(25), and  of speciesi, andj; is the local flux of species. The sub-
£Xs=F*S/£. The minimization in the linear case is also sub- SCriptsi allow for several species, each of which must obey
ject to the constraint of energy conservation, Ef). Eq. (28). Fluxes are meaSL_Jred with respect to the center of
moles reference frame. It is assumed that the total concen-
. - ~ tration %,;c; is constant and uniform; therefore, the center of

C. Global behavior of f and fr, moles reference frame is the same as the frame in which the

We have identified thermodynamic quantitiésthat de-  solid is at rest.

crease monotonically subject to the constraint of energy con- Equation(28) reduces in bulk to

<0,

A. Material conservation

<0. (27) dt

dt
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cPt= -V (29 T ?pem
L
and on the interface to
(CP=Cr)Va+ G KV =[j7=ji]-n. (30) S SR
0

Hereafter, the specific case of two species, labeled 1 and

2, is treated. It is assumed that the total concentratmn (

+¢,) is constant and uniform in both phases; therefore,

dc;=—dc, andj;= —j, in either phase. Identification of the

interface position with the equimolar surface for species 1

providesc}®=0. Becaused; + C,) is constant, the equimolar

I 7. SO

cL
0

)

surface for species 1 is also the equimolar surface for species FIG. 1. Phase diagram. The concentrations at the coexistence

2, and, thereforeg®=0. Because any variation ity brings
about a related change iy, it suffices to trackc, alone.
Equation(29) can be written foeither species 1 or 2 in bulk
solid or liquid in the form

E=—V.j, (31)

and Eq.(30) becomes

(c5=cHV,=[j°=j"I-n, (32

wherec=c, andj=j,.
We adopt a model similar to that proposed by Lar{d&i
for directional solidification for which the concentration vs

chemical potential curves have the same slope in bot
phases. Consider a portion of the phase diagram for which

ct—cS=Acy is constant. The miscibility gap is usually not

point are linear functions of the temperature. The reference tem-
peratureT, locates the values af; andc§. The slopem in this
case is negative.

n(c"* —Acy, T)=A(c*,T), (36)

which is the general equation for the liquidus line. The soli-
dus line is shifted exacthAcy from the liquidus line. Al-
though this cannot be true in general, and is not true in the
dilute limit (asc, approaches 0, for exampjat can be true
for some range of values of We choose to work within that
range.

We assume that the liquidus curve is a straight line: take

|1;.he form

(37

cH* =ch+(T—Ty)/m,

constant, but over a certain range of concentrations, and fQfnereT, is a constant temperatune is a constant liquidus
some materials, this is a reasonable approximation. We alsgope, and:'5 is the equilibrium concentration corresponding

assume that the effective chemical potentied w,— uq, is
a linear function ofc in both solid and liquid, wherg; and

to the temperaturd,. Figure 1 is a sketch of the phase
diagram for this model.

uo are the chemical potentials of species 1 and 2, respec-

tively. One can then write

cSt=b(u—po)+c5", (33

where c§ and cjj are constants with differencAcy=cj
—cg, bis a constant slope, ang, is the effective chemical
potential of the liquid aff and ch. A compatible form for
the u's as a function ot andT is

ui=n(cST),

pi=N(cT),

1
p3=n(cST)+ L (c5=cf),

u5=x<cL,T>+%<cL—c5>, (34

where » and\ are functions ot andT.

B. Variational models

The variational model will incorporate an expanded ver-
sion of the Gibbs-Thomson equation that includes the effects
of the local composition on the melting point. Both quadratic
and linear models will be developed. The reader is referred
to the literature for derivations of the corresponding standard
sharp interface mode[44,16,19.

We use the Kramers free ener(er unit volume

w:=e—Ts— uC;, (39

where a summation overis implied. In the case of a pure
substanceg is simply the negative of the pressure. The sur-
face excess, per unit area, of the extensive counterparito
the surface tension for a binary alloy.

1. Quadratic objective function

Consider the energwy=e—TyS— uiCi, Which differs

Along the coexistence curve, chemical potentials for eacA’oM the Kramers free energy in that the temperature that

species are equal,

pE=pE, p3=ps, (39)
leading to two equations for the equilibrium value$* and
ct*, where the staf*) denotes the value af® or c* on the

coexistence curve. One can solve these equations to findy by small amountd\ u; .

(ct* —cS*)=Ac,. One also obtains the equation

multiplies the entropy and the chemical potentials that mul-
tiply the concentrations are constant. The surface excess of
this energy is simplyws®=€*5—Ts*5— upici®. The func-

tion wg will be regarded to be a function dfand they; . It

is assumed that the temperature differs frognby a small
amountAT, and that the chemical potentigls differ from
Expandingwg aboutTy, o,

and uq, one finds
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(T )= wopt 20 AT+290) a4 1290 A
w t 1 :w p— I -
ol Iy, M2 00 aT . 5#10 M1 07#20 M2
&2
+3 7+ (Apy)?
Inil,
R DN AL ATA
g O( IU“Z) ﬁT& Iu‘l
o A A 7o A A
+ +—
&T& M2 &Mlaﬂ M1y,
(39

where the subscript “0” after the partial derivatives and thesufﬂmently large thaj,=0, j =0, andj=j,=0 on A

“00" after w imply evaluation afTy, wor, and wge. The

first term in the expansion is the actual Kramers free energ

evaluated afy and uq;, which is continuous at the interface

if To and thew; correspond to equilibrium at a planar inter-
face. The next three terms are individually zero, because
de=Tds+ u,dc;+ usdc,, and because the derivatives are

evaluated afly, wo1, andug,. The remaining terms can be

computed from thermodynamic identities, and after som

simplification, Eq.(39) can be rewritten

1| ds 5 ﬁcl dCy
w0=w00+2 AT P A,ul (9,u A,uz
0
ATA i ATA e ApqA
e +—
(ﬂ— M1 M2 (9#20 M1 M.

(40

Combining the three terms in EGL0) that contain deriva-
tives with respect to the;, applying the condition that,
+c, is constant, substitutingc=dc,=—dc; and u=u,
— w1 into Eq. (40), and using the relationgc/du, = dcldu
anddc/du,= —dcldu, one obtains

L oo 2+ A s+ 22 A
2 9, ( M1) ( “2) 0_;1«20 H1A o
_1 Jc 41
and
% \TA +(9 ATA ATA 42
&T M1 M2= &T My (42)

whereA pu=u— po and po= po— po1 -

Next, substitute Eq(41) into Eq. (40), then use Eq(33)
to evaluatedc/du=b and dc/dT=0 and note thats/JT|,
=c,/Ty, wherec, is the heat capacity per unit volume at
constantu, to find

wo(T, )= woo+ b(Aw)2+ Z(AT)Z (43)

By defining u=(u—wo)/(Acy/b) and T=(T—-Ty)[c,/
(ToE")]Y? where&' = Ac3/b, Eq.(43) becomes
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wO(T,,u,)=w00+ %5,[U2+U2]. (44)

Multiplying Eq. (12) by Tq, Eq. (28) by wei, and sub-
tracting them from Eq(8), one obtains

dt

fwodVJrfSLwéSdA}:—f (o= Tois— o) - NAA
\ A> Aout

f"g.dv+f Ns}‘sdA},
\ Agp

(49)

_TO

where V=Vg+V, . One can apply Eq(45 over a small
time intervalAt and to a small volum¥ which, however, is
out*

Substitutingw, from Eq. (44) and noting tha®, and3®
Must be positive, one finds

d
[f de+f fXSdA]sO,
v AsL

gt (46)

é(vhere

f=21[u?+T?]
and

5= wp €.
2. Linear objective function
By multiplying Eq.(32) by u, multiplying Eq.(15) by T,
and subtracting these from E(.1), one obtains

[05— 0"+ (04 W) KIV,= - TF, 47

where w*® is assumed not to depend explicitly on time.
Integrating Eq.(47) overAg, , one finds

f (05— ")V, dA+ f [0+ )y [KV,dA

SL AsL

=— f TS dA. (48)
AsL

The Kramers free energy has as independent varidhles
M1, and u,. Expanding this free energy about sorg,
Mo1, and g, to first order in the variable$, w,, and o,
one finds for each phag&or L),

oo~ So(T—Tp) —Coa(p1—

—Cox M2

o(T,puy,00) = e,

~ H02), (49
where the subscript 0 oo ands and the subscript 00 o
indicate evaluation aty, ug1, andugs.

Choosing the variable3,, ug;, and ug, in solid and
liquid to correspond to values for a flat interface at the melt-
ing point leads tan,= wg, and

Aw:

=03~ =Asy(T—To)+Aco(n—po), (50
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.
T, Ty
1 84 B
z z4 \ Zy
zl(x)
T FIG. 3. Variation of interface position. The unperturbed inter-

face position is identified by the poinig. This interface is per-
turbed to a positioxy+ epn. Then the variational derivative of
is computed to find the minimum.

I R z (u=T)/2 in solid
“1 2 F=1—(u-tr2 in liquid, (59
FIG. 2. The frozen temperature approximation for directional
solidification. If the thermal diffusion coefficients in solid and lig- and f**=w*%/&’.
uid are large, and approximately equal, and if the latent heat of In addition to the inequality6), material is conserved. By
fusion is negligible, then the temperature field is constant in timesubstitution ofc from Eq. (33) into Eq. (28), one finds that
and approximately linear in space in a reference frame that is mowhe conservation condition for material can be written in the
ing at velocityV in the z direction. The interface is located at  form of Eq.(7) where it has been assumed that0 on A,
somewhere between the thermal reservoirs, which maintain boundindc*=0 as stated previously. An equation for the conser-
ary conditionsT, and T, vation of energy will not be written for this model because
we will only treat the case of an isothermal system or use the

where u$=pu! and u5=u} at the interface and wherks,  frozen temperature approximation, which is described below.

_ s _ s L _ : > HESUHDER

_55_5_0* Aco=c5—Cg- The definitionsc:=c, and u:=pu, For a coordinate system that is translating with spééxl

Js'gé still hold, and so the definitiopo = wox~ tor has been o 5 girection, lengths are rescaled 1V and time by
Consider the identity D/V2 to obtain Eq.(2) for the bulk diffusion equation.

C. The frozen temperature approximation

1d
f AandA=——{j Ade—f AwdV
AsL 2 dt Vs Vik

f 7 AwdV f 7 AwdV
veat =% vt

The frozen temperature approximation can be used
[18,20—-22 to model directional solidification of a binary
mixture. The temperature field is assumed to have a constant
gradientG in thez direction, and to be translating at spééd

(51) in the z direction. In the moving reference frame, the tem-

perature field is, therefore, constant in time.
By the same reasoning presented in Sec. Il to neglect a simi- The experimental setup in the directional growth geom-
lar pair of integrals, and because it has been assumed for thisry is sketched in Fig. 2. A heat source in advance of the
model that the diffusion coefficients in solid and liquid are domain of interest and a heat sink behind the domain of
equal, the third and fourth integrals on the right-hand side ofnterest translate uniformly with respect to the sample at

Eq. (51) sum to zero in the limit of smaV . _ speedV. The heat source and sink are arranged so that the
Equation(51) can be substituted into E¢48) to give solidification front is located somewhere between them.

1 The temperature field can thus be writtdifz)=G(z
Efv AwdV— Efv AwdV+ fA wXSdA} —%,)+To, whereZ and%, are dimensional lengthsD/V
S : St andz,D/V. The value ofti in Eq. (54) can thus be written

1
2

dt

~ S,

- fAS |_T~Si< dA (52) - ASoéD

' U=— —(2—2p)=M(z—2y), (56)
The time derivative could be extracted from the second term &g
in Eq. (48) to obtain Eq.52) because we have assumed that
»*® does not depend explicitly on time. where

Substituting Eq(50) into Eg. (52) and defining ~ o 5
M=As,GD/(&'V)=GD/(mAcyV). (57

b
= (= ) 53 . L . . .
. ACO(M o) (53 In this approximation, the temperature field is legislated

and the only field that must be computed is the composi-
tional, or chemical potential, field. One could relax the fro-
zen temperature condition in the variational model, and then
one would also need to solve E@l) for the temperature
one obtains approximately the inequali§), where field. In this model, the only effect that the fixed temperature

_ Asqy 1
U(T)==—7(T—To)=m(T—To), (54
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field has on the computation is that it changes the interfacial The interface position will be identified by, and the
boundary condition for the compositional field. interface configuration by,+ enn, where 7 is a function
The frozen temperature approximation is a reasonable aplefined onxy, n is the unit normal vector pointing into the
proximation that greatly simplifies calculations of directional liquid, ande is a small parameter. The variatiéfF using the
solidification shapes, and includes enough of the importaninear form forf given in Eq.(25), can be computed as fol-
physics to display complex cellular morphologies similar tolows:
those observed in experiments. In particular, the paranveter
is recognized to be precisely the bifurcation parameter that
enters morphological stability theory for the limiting case of
constitutional supercoolinf23].

OF= 6J fdv+ 5f f*dA. (60)
v ASL

Evaluating the volume part of this variation first, one finds
D. Correspondence between variational and standard sharp

interface models 5 J de:%[ f Su=T)dv— f  S(u=T)
We choose a reasonable scheme for distributing the re- v v v
leased heat or solute due to motion of the interface, and
demonstrate that in the limit of smallt, the boundary con- +f s (Uu—T)endA
ditions maintained by the variational model are the same as A
those that are imposed in the standard sharp interface model. 1 { f
VS

dv

The conservation condition, Eq7), that constrains the 2 fASYLGfﬂdA}dV
minimization in the variational model, is not specific about
how the released potential from the moving interface should
be distributed into the volum¥. A sensible way of distrib- - J'VL JAS‘LGEWdA}dV]
uting the latent heat in the case of a pure material was sug-
gested previously7] and will be used here. _

A minimization step is used to update the interface posi- + jAS’L[(U_U)]'f’?dA’ (61)
tion from timet to time t+At, whereAt is a small time
interval. The motion of the interfacé,At will bring abouta  wheredA is a differential element of area. The second term
change in the potential in the neighborhood of the moving in Eqg. (60) can be computed to be
interface according to E@7). Assuming that the distribution
of the released heat or solute is determined by the diffusion
equation, the maximum distance that the released potential
can diffuse is of the order of/At.

A heat kernel can be used to compute the change in thehere it has been assumed ttiat(#) does not change ex-
potential field resulting from interface motion. The interfaceplicitly during the variation. In the limit adt— 0, the range
is a source of magnitud¥,At, so the change in chemical of G becomes small compared to the radius of curvature of

5f fXSdA=f (PS4 £%3) e pKdA, (62)
AS,L AS,L

potential atx, can be computed from the interface, and the volume integrals in K1) cancel.
Setting6F=0 to find the minimum configuration, one finds

Au(X2)=JAS'LG(|X1—X2|,At)Vn(Xl)Atdxl, (58) U_U:_(fXS‘FfEZ)K, (63)

where the function which is the Gibbs-Thomson condition, E®), as it is writ-

ten for the standard sharp interface model. Therefore, for

small At, the two models should give similar results. Varia-
(59  tional simulations have been tested by showing that the
simulation produces solutions that agree with some analyti-
cal solutions found by solving standard sharp interface mod-
els. A simulation[24] of the process of directional solidifi-

|X1— X,/

4At

G(|x;—Xo|,At)=(4mAt)~ (M2 ex;{ -

is a heat kernel, andis the dimensionality of the space. One
can verify that this choice ok u satisfies Eq(7) by integrat-  c4tion using the vibrational algorithm predicted the critical
ing Eq. (58) over the volume, and observing th@tis nor-  ¢ondgitions for morphological stability that agree which ana-
malized to one. Au is negligible for [x;—x,|>2VAt. |ytical solutions for the critical conditions calculated from
Therefore, the volum¥ that is affected by the motion of the sharp interface mode[@3]. In another implementation of a
interface is small, for smalAt. variational simulation, parabolic dendrites were computed

By choosing a configuration of the interface and allowingfor which the tip curvatures and Peclet numbers agreed with
a local normal variation of that configuration near a poiit  the values predicted by Ivants$25].

(see Fig. 3 one can compute a variation i, subject to
conservation of energy in the forf88). One can determine
the actual interfacial configuration by setting the variation
equal to zero, which will be true wheft is a minimum. In this paper, variational models for solidification are de-
Then, the boundary condition in the limit can be determinedived by using the principles of nonequilibrium thermody-
by taking the limit of this configuration adt approaches namics. Laws of conservation and entropy production lead to
zero. the equations that are summarized in Sec. |. Variational prin-

IV. CONCLUSIONS
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ciples are obtained for two different physical systems: theemperature approximation can be used to simplify the cal-
free growth of a pure material into a supercooled melt, andulation for the binary mixture.

the directional solidification of a binary mixture. In both A computational advantage of the variational approach
cases, two different expressions for the relevant free-energgver standard sharp interface model is that the curvature does
density are found: a quadratic form, and a linear form. Thenot need to be computed directly. Using a simulation based
guadratic form does not require the neglect of terms such asn the variational mod€]7,24], one can employ relatively
the second term in Eq26), and is also associated with a coarse meshes to compute the evolution of crystal shapes.
global minimizer for the entire variational algorithm. Varia- Another advantage is that the variational approach incorpo-
tional models had been used previously on the basis of thenates thermodynamic laws more directly through the minimi-
mathematical connection to standard sharp interface modelgation of an energy, as opposed to assigning a boundary
The derivations that are presented here provide a direct linkondition whose value was determined separately by such a

between those models and irreversible thermodynamics.

minimization.

These variational models provide an alternative approach

for modeling the process of solidification. Several modeling
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