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Thermodynamic basis for a variational model for crystal growth
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University of Chicago, Chicago, Illinois 60637

~Received 19 October 1998!

Variational models provide an alternative approach to standard sharp interface models for calculating the
motion of phase boundaries during solidification. We present a correspondence between objective functions
used in variational simulations and specific thermodynamic functions. We demonstrate that variational models
with the proposed identification of variables are consistent with nonequilibrium thermodynamics. Variational
models are derived for solidification of a pure material and then generalized to obtain a model for solidification
of a binary alloy. Conservation laws for internal energy and chemical species and the law of local entropy
production are expressed in integral form and used to develop variational principles in which a ‘‘free energy,’’
which includes an interfacial contribution, is shown to be a decreasing function of time. This free energy takes
on its minimum value over any short time interval, subject to the laws of conservation of internal energy and
chemical species. A variational simulation based on this model is described, and shown for small time intervals
to provide the Gibbs-Thomson boundary condition at the solid-liquid interface.@S1063-651X~99!02307-7#

PACS number~s!: 81.10.Aj, 05.70.Ln, 02.70.2c, 64.70.Dv
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I. INTRODUCTION

In computational modeling of crystal growth, standa
sharp interface models are very cumbersome to solve
merically. This arises because the crystal-melt interface
free boundary that must be tracked by some numerical a
rithm with an accuracy necessary to compute its curvat
on which its local equilibrium conditions~temperature and
composition! depend. Alternative models are being dev
oped that are more efficient for numerical computations.

The phase-field model has received considerable atten
because of its basis in the fundamental laws of irrevers
thermodynamics, and because phase-field simulations ca
used to compute crystal shapes quite complex in compar
with those obtained from numerical solutions to stand
sharp interface models@1–6#.

Variational models are another alternative. In variatio
models, one minimizes a ‘‘free energy,’’ subject to cons
vation conditions, to determine the position of the sol
liquid interface, and in a separate step solves the diffus
equation for temperature or chemical potential in the bu
By iterating these two steps, one can compute the time e
lution of a solid-liquid interface. Variational simulations fo
the solidification of a pure material were proposed a
implemented by one of the present authors@7# Roosen and
Taylor @8# and Taylor@9–11# used similar principles to de
velop simulations of the evolution of interfaces with cryst
line ~faceted! surface energies. These simulations were ba
on a mathematical connection to standard sharp inter
models. In this paper, a thermodynamic basis for variatio
models is presented and generalized to include alloy so
fication.

*Present address: MEMC Electronic Materials Inc., Saint Pet
MO 63376.
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Variational simulations are well suited to massively pa
allel computation and do not require such careful tracking
the interface as one would need for sharp interface mode
compute the interface curvature by some combination of
cal curve fitting and interpolation. An advantage of var
tional simulations from a theoretical standpoint is that t
Gibbs-Thomson interfacial boundary condition results
rectly from the minimization of a free energy, which is i
underlying basis.

We derive variational models for the solidification of
pure material and the solidification of a binary alloy. Tw
versions of the variational model are derived in each cas
quadratic and a linear model.

A. Some notation

Consider a volume occupied by two phases~e.g., a solid
crystal and its liquid melt! separated by an interface. W
treat a subvolumeV contained within a surfaceAout that may
include a portion of the interface. The intersections of t
solid, liquid, and interface withV are calledVS , VL , and
ASL , respectively.

A dimensionless potential fieldu represents a temperatur
field in the case of a pure substance and a chemical pote
field in the case of a binary alloy. In the variational mode
and in the standard sharp interface models,u is a solution of
the diffusion equation,

u̇5¹2u, ~1!

in the bulk solid and liquid. The dot above a variable deno
partial differentiation with respect to dimensionless time.

Later we consider a coordinate system that is moving
the z direction with nondimensional speed 1 with respect
the crystal, in which case the bulk fields obey a diffusi
equation of the form

s,
705 ©1999 The American Physical Society
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u̇5¹2u1
]u

]z
. ~2!

For both the variational models and standard sharp inter
models, the bulk fields are determined by a solution of
diffusion equation, but the models differ in the way that t
boundary conditions at the crystal-melt interface are trea

B. Standard sharp interface models

In standard sharp interface models,u is continuous at the
solid-liquid interface and takes on the value

u2ũ52~ f xs1 f uu
xs!K, ~3!

whereũ is a reference potential that can frequently be tak
to be zero,f xs is proportional to an excess interfacial fre
energy, andK is the dimensionless curvature of the interfac
Sincef xs is assumed to depend on the surface orientation,
notation (f xs1 f uu

xs)K, which would be correct in two dimen
sions, is a symbolic representation for (f xs1 f u1u1

xs )K11( f xs

1 f u2u2

xs )K2 , which applies in three dimensions. Theu sub-

scripts represent differentiation off with respect tou, and the
subscripts 1 and 2 identify angles between the normal
the two principal axes of curvature for the interface. Equ
tion ~3! is often referred to as the Gibbs-Thomson equati

There is also a conservation condition at the crystal-m
interface of the form

Vn5@“uS2“uL#•n, ~4!

where Vn is the dimensionless local normal growth spee
andn is the normal to the interface pointing into the liqui
Equation~4! applies when the thermal conductivities in so
and liquid are equal, which is an approximation we disc
later.

Equation~1! or ~2!, subject to the boundary conditions~3!
and ~4! on ASL with Neumann, Dirichlet, or other suitabl
conditions on the external boundary, constitute a mathem
cally well-posed model for the evolution of crystal shape

C. Variational models

In variational models, the process of determining the e
lution the interface position and potential field over a sh
time interval fromt to t1Dt, is divided into two computa-
tional steps: ~i! bulk diffusion and ~ii ! interface motion.
The potential field~e.g., temperature for solidification of
pure material! can change during both steps.

In the first step, the bulk fields are computed by allowi
heat to diffuse for timeDt without regard to the presence o
a solid-liquid interface, and the interface position does
change. In the second step, the interface can change pos
The bulk field changes in the second step only to accoun
the change in potential due to motion of the interface~e.g., to
account for latent heat in the case of a pure material!. The
flux of potential associated with the motion of the interface
called the difference flux, because it results from a differe
between solid and liquid equilibrium values of a conserv
quantity, such as internal energy.

In the second step, the new interface position is found
the minimization of a total energy,F of the form
ce
e
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F5E
V

f dV1E
AS,L

f xsdA, ~5!

which is minimized over all possible new interface config
rations, subject to a conservation constraint. The quantityf is
a dimensionless bulk energy density that is a specified fu
tion of the potential fieldu, and f xs is a dimensionless free
energy density of the crystal-melt interface, and can dep
on its orientation.

The difference flux plays an important role in the minim
zation ofF. At the beginning of an iteration step, the bu
field and the interface position are in a configuration we w
call A. After the bulk diffusion step~step 1! has been com-
pleted, the system is in configurationB, which has interface
position and configuration corresponding toA but a new po-
tential fielddue to diffusion for a timeDt. ConfigurationB
is, therefore, an intermediate configuration not necessa
representing the physical system configuration at any ti
To obtain the actual configurationC one must minimizeF
with respect to all interface positions and configuratio
During the minimizing process, one might try configuratio
B8 that differs from configurationB in the location of the
interface, and in the potential field. The potential field forB8
is the sum of the potential field associated with configurat
B and the new potential associated with the difference fl
The new potential is determined by taking each volume e
ment that would change phase if the system were to evo
from B to B8 and distributing the released potential~or with-
drawing the absorbed potential in the case of melting! in a
small neighborhood of approximate dimensionless rad
ADt of all volume elements that have changed phase. T
any volume that changes phase can only affect the bulk
tential in a local neighborhood whose size is determined
Dt. By distributing potential in a small but finite neighbo
hood of material that has changed phase, one account
the diffusion that would take place between the time of
phase transformation, assumed to be intermediate tot and t
1Dt, and the end of the time step att1Dt. After determin-
ing configurationB8 ~interface position and new bulk field!,
one can computeF for B8, and compare it with that forB.
By trying a large number of possible interface configu
tions, one can find that configuration that minimizesF, and
take that as the updated system configurationC at time t
1Dt. This configuration will be configurationA for the next
iteration.

Several variational models, for whichf depends onu in
various ways, are described in this paper. The derivati
presented below treat only the variational step~step 2! of the
algorihm discussed above. For each model, the law of p
tive local entropy production and conservation laws~for in-
ternal energy and/or chemical species! are used to show tha

]F/]t<0. ~6!

The conservation condition that we will apply to step 2
used to determine the difference flux and can be expresse
the form

E
AS,L

VndA5E
V
u̇dV, ~7!
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whereVn is the normal growth speed of the interface, a
results from a statement of conservation of the quantity
which u is the conjugate potential. For example, ifu is a
dimensionless temperature, the conservation condition
statement of the conservation of energy accounting for
latent heat of solidification.

A variational model in the limitDt→0 and a standard
sharp interface model will both impose the Gibbs-Thoms
boundary condition foru at the crystal-melt interface.

D. Approximations

It is assumed that the materials being modeled are r
and of constant density, so that transport is purely diffus
~i.e., no convection!. We adopt a symmetric model, fo
which the appropriate transport coefficients in solid and
uid are equal, which greatly simplifies the calculations and
essential for the derivation of the variational model. For
solidification of a pure material, the thermal diffusion coe
ficients in solid and liquid can be of comparable magnitu
but are usually not equal. For metals, they differ typically
a factor of 2, and for ice and water by approximately 3@12#.
For chemical diffusion in a binary mixture, the diffusion c
efficient in the solid is typically three or four orders of ma
nitude smaller than that in the liquid, so the assumption
equal diffusion coefficients is incorrect for this case. A mo
appropriate approximation would be to assume that the
fusion coefficient in the solid is zero.

There exist systems for which the diffusion coefficients
solid and liquid are comparable, and to which the mathem
cal formulation presented in Sec. III may be applied. In
experimental work of Melo and Oswald@13#, in which they
study the directional growth of a liquid crystal phase in
another one, the diffusion coefficients in the two phases
fer by roughly a factor of 2.

Another consideration is the relative importance of t
transport coefficient in the solid to the overall behavior
some systems. For a pure material growing freely into a
percooled liquid, one can argue that the solid is nearly i
thermal because the temperature gradients that occur in
solid are due solely to the effects of capillarity on the int
facial temperature. Almost independent of what value o
chooses for the thermal conductivity in the solid, most of
heat transport that leads to growth comes from the m
larger temperature gradients in the liquid. The choice of th
mal diffusion coefficient for the solid in such cases wou
not dramatically affect the behavior of the system. By t
same argument, choosing a finite diffusion coefficient
solid should not give rise to significant material fluxes, p
vided that the gradients in solid are small compared to th
in the liquid.

Although the approximation of equal transport coef
cients in solid and liquid limit the applicability of the mode
we claim that one can obtain some meaningful insight i
the process of crystal growth, and proceed with these iss
in mind.

II. SOLIDIFICATION OF A PURE MATERIAL

We first treat a variational model of solidification of
pure material from its melt in the absence of convecti
Derivations that use the same basic laws can be used to
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tain standard sharp interface models@14–16#.

A. Energy conservation and entropy production

The law of conservation of energy can be expressed in
form

d

dt F EVS

eSdV1E
VL

eLdV1E
ASL

exsdAG52E
Aout

je•noutdA,

~8!

wheree is the internal energy density,je is the internal en-
ergy flux, andnout is the outward pointing normal toAout.
The superscriptsS, L, andxs hereafter denote, respectivel
the solid, liquid, and surface excess of the quantity.

Equation~8! can be rewritten by applying the time deriva
tive on the left-hand side to obtain

E
VS

ėSdV1E
VL

ėLdV1E
ASL

~eS2eL!VndA

1E
ASL

~exs1euu
xs!KVndA1E

ASL

ėxsdA

52E
Aout

je•noutdA, ~9!

whereK is the interfacial curvature, and the dot (˙ ) above a
variable represents partial differentiation with respect
time. The excess internal energy density may be a func
of the orientation of the interface, and may depend explic
on time.

In bulk solid or bulk liquid~no ASL), Eq. ~9! can be re-
duced to differential form by using the divergence theor
on the right-hand side and shrinkingV to a point, resulting in

ė52“• je . ~10!

If, instead, one shrinksV to a portion of the interface
then shrinks that interfacial area to a point, the conserva
condition becomes

~eS2eL!Vn1~exs1euu
xs!KVn1ėxs5@ je

S2 je
L#•n, ~11!

wheren is the unit normal toAS,L pointing into the liquid,
and je

S and je
L are the internal energy fluxes in the solid a

liquid, respectively.
The second law of thermodynamics~positive local en-

tropy production! for this system can be written

d

dt F EVS

sSdV1E
VL

sLdV1E
ASL

sxsdAG
52E

Aout

j s•noutdA1E
V
s̃IdV1E

ASL

s̃I
xsdA, ~12!

wheres is the entropy density,j s is the entropy flux,s̃I and
s̃I

xs are the local rates of entropy production per unit volum
in the bulk, and on the interface, respectively. These qua
ties must always satisfys̃I>0 and s̃I

xs>0, where the equa
sign applies only to a hypothetical reversible process.
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By applying the time derivative on the left-hand side
Eq. ~12! one obtains

E
VS

ṡSdV1E
VL

ṡLdV1E
ASL

~sS2sL!VndA

1E
ASL

~sxs1suu
xs!KVndA1E

ASL

ṡxsdA

52E
Aout

j s•noutdA1E
V
s̃IdV1E

ASL

s̃I
xsdA. ~13!

Equation~12! can also be reduced in bulk to an equati
which is similar to Eq.~10! with an extra entropy production
term,

ṡ52“• j s1 s̃I , ~14!

and on the interface,

~sS2sL!Vn1~sxs1suu
xs!KVn1 ṡxs5@ j s

S2 j s
L#•n1 s̃I

xs .
~15!

B. Variational models

The variational models to be derived here for the p
material were proposed previously@7# and motivated intu-
itively based on the mathematical structure of the proble

If the heat capacities per unit volumecv in the solid and
in the liquid are assumed to be equal and independent o
temperature, then the internal energy density

eS,L5cv~T2Tm!1e0
S,L , ~16!

where the quantitiese0
S,L are constants for whiche0

L2e0
S

5Lv , whereLv is the latent heat of fusion per unit volum
Becausede5Tds, one can write

sS,L5cv ln~T/Tm!1s0
S,L , ~17!

wheres0
S,L are constants for whichs0

L2s0
S5Lv /Tm .

1. Quadratic objective function

Consider a free-energy density defined byf̃ m5e2Tms,
which differs from the Helmholtz free-energy density,f̃ 5e
2Ts, in that the temperature that multiplies the entropy
constant, the melting temperature for a planar interface.
surface excess of this energy is simplyf̃ m

xs5exs2Tmsxs.

By expandingf̃ m(T) aboutTm , one finds to second orde

f̃ m~T!5 f̃ m~Tm!1
] f̃ m

]T
U

Tm

~T2Tm!1
1

2

]2 f̃ m

]T2 U
Tm

~T2Tm!2

1¯. ~18!

The first term in the expansion is the Helmholtz free ene
at the melting temperature. The second term is zero, bec
de5Tds, and because the derivative is evaluated atTm . The
third term can be evaluated and is found to be
e

.

he

s
e

y
se

cv

2Tm
~T2Tm!2. ~19!

Since f̃ m(Tm) and cv are independent of phase,f̃ m is inde-
pendent of phase at any given value ofT.

Next, consider the thermodynamic laws. Multiplying E
~12! by Tm , subtracting that product from Eq.~8!, and using
je5Tj s , one obtains

d

dt F EV
f̃ mdV1E

AS,L
f̃ m

xsdAG52E
Aout

S 12
Tm

T D je•ndA

2TmF E
V
s̃IdV1E

ASL

s̃I
xsdAG ,

~20!

whereV5VS1VL .
For a perturbation of a small portion of the solid-liqu

interface, the surfaceAout may be placed far enough awa
that the difference flux from the motion ofASL will not reach
Aout in a short time intervalDt, leading toje•n50 on Aout.
By applying Eq.~20! over a small time intervalDt and to a
small volume V that, however, is sufficiently large tha
je•n50 on Aout substituting the nondimensionalized tem
perature,u5(T2Tm)/(Lv /cv), using the expandedf̃ m from
Eq. ~18! and keeping terms to second order inu, Eq. ~20!
becomes

d

dt H EV

1

2
u2dV1E

ASL

f̃ m
xs

E dAJ
52

Tm

E H E
V
s̃IdV1E

ASL

s̃I
xsdAJ , ~21!

where the energy density parameter isE5Lv
2/(cvTm), and

where length variables have been rescaled by a characte
length l and time byl 2/k, wherek is the thermal diffusion
coefficient.

Substituting Eq.~16! into Eq. ~9!, assuming thatje50 on
Aout and neglecting the terms containingexs1euu

xs and ėxs

because (exs1euu
xs)K!Lv and ėxs/Vn!Lv , one obtains

E
V
u̇dV2E

ASL

VndA50. ~22!

By defining the objective functionf 5u2/2 and f xs

5 f̃ m
xs/E, Eqs.~21! and ~22! can be rewritten in the form o

Eqs. ~6! and ~7!, respectively. In addition, the bulku fields
must satisfy the diffusion equation~1!. Therefore, a mode
based on Eqs.~6!, ~7!, and~1! is consistent with the first and
second laws of thermodynamics.

2. Linear objective function

In this alternative variational formulation, an objectiv
function f that has a different dependence onu is defined.
Using Eqs.~16! and ~17!, one can write

f̃ S2 f̃ L5@~T/Tm!21#Lv5uE, ~23!
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where f̃ 5e2Ts is the true Helmholtz free energy, andu and
E are given in the previous section.

Multiplying Eq. ~15! by T and subtracting the produc
from Eq. ~11!, then integrating the result over a portion
the interface, one obtains

E
ASL

H uVn1
f̃ xs1 f̃ uu

xs

E KVnJ dA52
1

E EASL

Ts̃I
xsdA,

~24!

where f̃ xs5(exs2Tsxs) is the surface excess Helmholtz fre
energy, which is assumed not to depend explicitly on tim

Consider an objective function

f 5 Hu/2
2u/2

in solid
in liquid. ~25!

One can write

d

dt EV
f dV5E

V

] f

]t
dV1E

ASL

uVndA.

Substituting this into Eq.~24!, and recalling thats̃I
xs>0, one

finds

d

dt F EV
f dV1E

ASL

f̃ xs

E dAG1
1

2 F E
VL

u̇dV2E
VS

u̇dVG<0,

~26!

where the time derivative off̃ xs was moved outside of the
integral in the second term of Eq.~24! to obtain Eq.~26!
@14#.

Because the latent heat is distributed isotropically~a di-
rect result of the assumption of equal transport coefficient
solid and liquid!, the third and fourth terms on the left-han
side of Eq.~26! reduce approximately to a constant times t
difference in volumes occupied by solid and liquid in t
region V. AssumingV is a sphere of small radiusr h , the
fractional difference in volume between solid and liquid
proportional tor hK. By choosingr h!R, where R is the
radius of curvature of the interface, one can neglect the s
of the third and fourth terms in Eq.~26! @7#. Setting the sum
of these terms equal to zero is equivalent to assuming
the conjugate variable~energy! associated with the potentia
u released because of the phase transformation is app
mately equally distributed between the solid and liquid. Th
we obtain the approximate inequality,

d

dt F EV
f dV1E

ASL

f̃ xs

E dAG<0. ~27!

Using the same nondimensionalization of the position a
time variables that was used for the quadratic case, Eq.~26!
takes the form of Eq.~6! wheref is given by Eq.~25!, and
f xs5 f̃ xs/E. The minimization in the linear case is also su
ject to the constraint of energy conservation, Eq.~7!.

C. Global behavior of f̃ and f̃ m

We have identified thermodynamic quantitiesF that de-
crease monotonically subject to the constraint of energy c
.

in

m

at

xi-
s

d

-

n-

servation. Whether such a quantity decreases globally for
entire variational algorithm for athermally insulated system
depends on howF behaves when the potential field diffuse
Existence of a quantity that decreases globally in time
certain theoretical advantages@17#, though it is not necessar
for practical computations.

To understand this, we return to the variational algorith
presented in the Introduction. At the end of step 1, the in
mediate configuration isB and has the same interface geom
etry asA, but differs by diffusion of the potential. In the
minimization step, we consider a variety of configuratio
B8 in an attempt to minimizeF. Let C be the final minimiz-
ing configuration. Now, sinceB is one of the candidate mini
mizers in step 2, we certainly haveF(C)<F(B). We shall
call F a global decreaserif we can guarantee thatF(C)
<F(A); that is, if F necessarily decreases from one tim
step to the next. Clearly, this will be the case ifF is de-
creased in the diffusion step of the algorithm, for then
haveF(B)<F(A) andF is a global decreaser.

Negative entropy, for example, is a global decreaser. N
that the entropy of bulk solid or liquid is a concave dow
ward function of the internal energy, and hence the tempe
ture, for constant specific heat, which we have assum
Thermal diffusion drives an insulated system toward a s
tem average temperature and the total integrated entrop
larger values. Negative entropy is also a global decrea
when multiple phases are considered. The disadvantag
the entropy in the context of variational algorithms is tha
is not continuous at the solid-liquid interface.

The Helmholtz free energy is not a global decreaser,
neither is the linear objective function derived from it. Th
is why we have introduced the objective functionf̃ m , which
is a global decreaser, and which is continuous at the so
liquid interface; the quadratic functional derived fromf̃ m in-
herits these characteristics.

III. SOLIDIFICATION OF A BINARY ALLOY

We develop our variational model of solidification of
binary alloy by adding the conservation of material spec
to the previous laws. This model is also applicable to
isothermal precipitation of a crystal with different compos
tion from that of the solution from which it grows.

A. Material conservation

The law of conservation of material is

d

dt F EVS

ci
SdV1E

VL

ci
LdV1E

ASL

ci
xsdAG52E

Aout

j i•noutdA,

~28!

whereci is the local concentration~number per unit volume!
of speciesi, and j i is the local flux of speciesi. The sub-
scriptsi allow for several species, each of which must ob
Eq. ~28!. Fluxes are measured with respect to the cente
moles reference frame. It is assumed that the total conc
tration S ici is constant and uniform; therefore, the center
moles reference frame is the same as the frame in which
solid is at rest.

Equation~28! reduces in bulk to
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ċi
S,L52“• j i ~29!

and on the interface to

~ci
S2ci

L!Vn1ci
xsKVn5@ j i

S2 j i
L#•n. ~30!

Hereafter, the specific case of two species, labeled 1
2, is treated. It is assumed that the total concentrationc1
1c2) is constant and uniform in both phases; therefo
dc152dc2 andj152 j2 in either phase. Identification of th
interface position with the equimolar surface for specie
providesc1

xs50. Because (c11c2) is constant, the equimola
surface for species 1 is also the equimolar surface for spe
2, and, therefore,c2

xs50. Because any variation inc2 brings
about a related change inc1 , it suffices to trackc2 alone.
Equation~29! can be written foreitherspecies 1 or 2 in bulk
solid or liquid in the form

ċ52“• j , ~31!

and Eq.~30! becomes

~cS2cL!Vn5@ jS2 jL#•n, ~32!

wherec5c2 and j5 j2 .
We adopt a model similar to that proposed by Langer@18#

for directional solidification for which the concentration v
chemical potential curves have the same slope in b
phases. Consider a portion of the phase diagram for wh
cL2cS[Dc0 is constant. The miscibility gap is usually no
constant, but over a certain range of concentrations, and
some materials, this is a reasonable approximation. We
assume that the effective chemical potential,m[m22m1 , is
a linear function ofc in both solid and liquid, wherem1 and
m2 are the chemical potentials of species 1 and 2, resp
tively. One can then write

cS,L5b~m2m0!1c0
S,L , ~33!

where c0
S and c0

L are constants with differenceDc05c0
S

2c0
L , b is a constant slope, andm0 is the effective chemica

potential of the liquid atT0 andc0
L . A compatible form for

the m’s as a function ofc andT is

m1
S5h~cS,T!,

m1
L5l~cL,T!,

m2
S5h~cS,T!1

1

b
~cS2c0

S!,

m2
L5l~cL,T!1

1

b
~cL2c0

L!, ~34!

whereh andl are functions ofc andT.
Along the coexistence curve, chemical potentials for e

species are equal,

m1
S5m1

L , m2
S5m2

L , ~35!

leading to two equations for the equilibrium values,cS* and
cL* , where the star~* ! denotes the value ofcS or cL on the
coexistence curve. One can solve these equations to
(cL* 2cS* )5Dc0 . One also obtains the equation
nd

,

1

ies

th
h

or
so

c-

h

nd

h~cL* 2Dc0 ,T!5l~cL* ,T!, ~36!

which is the general equation for the liquidus line. The so
dus line is shifted exactlyDc0 from the liquidus line. Al-
though this cannot be true in general, and is not true in
dilute limit ~asc1 approaches 0, for example!, it can be true
for some range of values ofc. We choose to work within tha
range.

We assume that the liquidus curve is a straight line: ta
the form

cL* 5c0
L1~T2T0!/m, ~37!

whereT0 is a constant temperature,m is a constant liquidus
slope, andc0

L is the equilibrium concentration correspondin
to the temperatureT0 . Figure 1 is a sketch of the phas
diagram for this model.

B. Variational models

The variational model will incorporate an expanded v
sion of the Gibbs-Thomson equation that includes the effe
of the local composition on the melting point. Both quadra
and linear models will be developed. The reader is refer
to the literature for derivations of the corresponding stand
sharp interface models@14,16,19#.

We use the Kramers free energy~per unit volume!

vªe2Ts2m ici , ~38!

where a summation overi is implied. In the case of a pure
substance,v is simply the negative of the pressure. The s
face excess, per unit area, of the extensive counterpart tov is
the surface tension for a binary alloy.

1. Quadratic objective function

Consider the energyv05e2T0s2m0ici , which differs
from the Kramers free energy in that the temperature t
multiplies the entropy and the chemical potentials that m
tiply the concentrations are constant. The surface exces
this energy is simplyv0

xs5exs2T0sxs2m0ici
xs . The func-

tion v0 will be regarded to be a function ofT and them i . It
is assumed that the temperature differs fromT0 by a small
amountDT, and that the chemical potentialsm i differ from
m0i by small amountsDm i . Expandingv0 aboutT0 , m01,
andm02, one finds

FIG. 1. Phase diagram. The concentrations at the coexiste
point are linear functions of the temperature. The reference t
peratureT0 locates the values ofc0

S and c0
L . The slopem in this

case is negative.
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v0~T,m1 ,m2!5v001
]v0

]T U
0

DT1
]v0

]m1
U

0

Dm11
]v0

]m2
U

0

Dm2

1
1

2 F ]2v0

]T2 U
0

~DT!21
]2v0

]m1
2 U

0

~Dm1!2

1
]2v0

]m2
2 U

0

~Dm2!2G1
]2v0

]T]m1
U

0

DTDm1

1
]2v0

]T]m2
U

0

DTDm21
]2v0

]m1]m2
U

0

Dm1Dm2 ,

~39!

where the subscript ‘‘0’’ after the partial derivatives and t
‘‘00’’ after v imply evaluation atT0 , m01, and m02. The
first term in the expansion is the actual Kramers free ene
evaluated atT0 andm0i , which is continuous at the interfac
if T0 and them0i correspond to equilibrium at a planar inte
face. The next three terms are individually zero, beca
de5Tds1m1dc11m2dc2 , and because the derivatives a
evaluated atT0 , m01, andm02. The remaining terms can b
computed from thermodynamic identities, and after so
simplification, Eq.~39! can be rewritten

v05v001
1

2 F ]s

]TU
0

DT21
]c1

]m1
U

0

Dm1
21

]c2

]m2
U

0

Dm2
2G

1
]c1

]T U
0

DTDm11
]c2

]T U
0

DTDm21
]c1

]m2
U

0

Dm1Dm2 .

~40!

Combining the three terms in Eq.~40! that contain deriva-
tives with respect to them i , applying the condition thatc1
1c2 is constant, substitutingdc5dc252dc1 and m5m2
2m1 into Eq. ~40!, and using the relations]c/]m15]c/]m
and]c/]m252]c/]m, one obtains

1

2

]c1

]m1
U

0

~Dm1!21
1

2

]c2

]m2
U

0

~Dm2!21
]c1

]m2
U

0

Dm1Dm2

5
1

2

]c

]mU
0

~Dm!2 ~41!

and

]c1

]T U
0

DTDm11
]c2

]T U
0

DTDm25
]c

]TU
0

DTDm, ~42!

whereDm5m2m0 andm05m022m01.
Next, substitute Eq.~41! into Eq. ~40!, then use Eq.~33!

to evaluate]c/]m5b and ]c/]T50 and note that]s/]Tu0
5cv /T0 , wherecv is the heat capacity per unit volume
constantm, to find

v0~T,m!5v001
1

2 Fb~Dm!21
c0

T0
~DT!2G . ~43!

By defining u5(m2m0)/(Dc0 /b) and ũ5(T2T0)@cv /
(T0E8)#1/2, whereE85Dc0

2/b, Eq. ~43! becomes
y

e

e

v0~T,m!5v001
1
2E8@u21ũ2#. ~44!

Multiplying Eq. ~12! by T0 , Eq. ~28! by m0i , and sub-
tracting them from Eq.~8!, one obtains

d

dt F EV
v0dV1E

AS,L
v0

xsdAG52E
Aout

~ je2T0j s2m0j !•ndA

2T0F E
V
s̃IdV1E

ASL

s̃I
xsdAG ,

~45!

where V5VS1VL . One can apply Eq.~45! over a small
time intervalDt and to a small volumeV which, however, is
sufficiently large thatje50, j s50, and j[ j250 on Aout.

Substitutingv0 from Eq. ~44! and noting thats̃I and s̃I
xs

must be positive, one finds

d

dt H EV
f dV1E

ASL

f xsdAJ <0, ~46!

where

f 5 1
2 @u21ũ2#

and

f xs5v0
xs/E8.

2. Linear objective function

By multiplying Eq. ~32! by m, multiplying Eq.~15! by T,
and subtracting these from Eq.~11!, one obtains

@vS2vL1~vxs1vuu
xs!K#Vn52Ts̃I

xs , ~47!

wherevxs is assumed not to depend explicitly on time.
Integrating Eq.~47! over AS,L , one finds

E
AS,L

~vS2vL!VndA1E
AS,L

@vxs1vuu
xs#KVndA

52E
AS,L

Ts̃I
xsdA. ~48!

The Kramers free energy has as independent variableT,
m1 , and m2 . Expanding this free energy about someT0 ,
m01, andm02 to first order in the variablesT, m1 , andm2 ,
one finds for each phase~S or L!,

v~T,m1 ,m2!5v002s0~T2T0!2c01~m12m01!

2c02~m22m02!, ~49!

where the subscript 0 onc ands and the subscript 00 onv
indicate evaluation atT0 , m01, andm02.

Choosing the variablesT0 , m01, and m02 in solid and
liquid to correspond to values for a flat interface at the me
ing point leads tov00

S 5v00
L and

DvªvS2vL5Ds0~T2T0!1Dc0~m2m0!, ~50!
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wherem1
S5m1

L andm2
S5m2

L at the interface and whereDs0

5s0
L2s0

S , Dc05c0
L2c0

S . The definitionscªc2 andmªm2

2m1 still hold, and so the definitionm05m022m01 has been
used.

Consider the identity

E
AS,L

DvVndA5
1

2

d

dt F EVS

DvdV2E
VLK

DvdVG
2

1

2 F E
VS

]

]t
DvdV2E

VL

]

]t
DvdVG .

~51!

By the same reasoning presented in Sec. II to neglect a s
lar pair of integrals, and because it has been assumed for
model that the diffusion coefficients in solid and liquid a
equal, the third and fourth integrals on the right-hand side
Eq. ~51! sum to zero in the limit of smallV.

Equation~51! can be substituted into Eq.~48! to give

d

dt F1

2 EVS

DvdV2
1

2 EVL

DvdV1E
AS,L

vxsdAG
'2E

AS,L

Ts̃I
xsdA. ~52!

The time derivative could be extracted from the second te
in Eq. ~48! to obtain Eq.~52! because we have assumed th
vxs does not depend explicitly on time.

Substituting Eq.~50! into Eq. ~52! and defining

uª
b

Dc0
~m2m0!, ~53!

ũ~T!ª2
Ds0

E8 ~T2T0!5
1

mDc0
~T2T0!, ~54!

one obtains approximately the inequality~6!, where

FIG. 2. The frozen temperature approximation for directio
solidification. If the thermal diffusion coefficients in solid and liq
uid are large, and approximately equal, and if the latent hea
fusion is negligible, then the temperature field is constant in ti
and approximately linear in space in a reference frame that is m

ing at velocity Ṽ in the z direction. The interface is located atzI

somewhere between the thermal reservoirs, which maintain bo
ary conditionsTh andTc .
i-
his

f

m
t

f 5 H ~u2ũ!/2 in solid
2~u2ũ!/2 in liquid, ~55!

and f xs5vxs/E8.
In addition to the inequality~6!, material is conserved. By

substitution ofc from Eq. ~33! into Eq. ~28!, one finds that
the conservation condition for material can be written in t
form of Eq. ~7! where it has been assumed thatj50 on Aout

andci
xs50 as stated previously. An equation for the cons

vation of energy will not be written for this model becau
we will only treat the case of an isothermal system or use
frozen temperature approximation, which is described bel

For a coordinate system that is translating with speedṼ in
the ẑ direction, lengths are rescaled byD/Ṽ and time by
D/Ṽ2 to obtain Eq.~2! for the bulk diffusion equation.

C. The frozen temperature approximation

The frozen temperature approximation can be u
@18,20–22# to model directional solidification of a binar
mixture. The temperature field is assumed to have a cons
gradientG̃ in thez direction, and to be translating at speedṼ
in the z direction. In the moving reference frame, the tem
perature field is, therefore, constant in time.

The experimental setup in the directional growth geo
etry is sketched in Fig. 2. A heat source in advance of
domain of interest and a heat sink behind the domain
interest translate uniformly with respect to the sample
speedṼ. The heat source and sink are arranged so that
solidification front is located somewhere between them.

The temperature field can thus be writtenT(z)5G̃( z̃
2 z̃0)1T0 , where z̃ and z̃0 are dimensional lengthszD/Ṽ
andz0D/Ṽ. The value ofũ in Eq. ~54! can thus be written

ũ52
Ds0G̃D

E8Ṽ
~z2z0!5M ~z2z0!, ~56!

where

M5Ds0G̃D/~E8Ṽ!5G̃D/~mDc0Ṽ!. ~57!

In this approximation, the temperature field is legislat
and the only field that must be computed is the compo
tional, or chemical potential, field. One could relax the fr
zen temperature condition in the variational model, and th
one would also need to solve Eq.~1! for the temperature
field. In this model, the only effect that the fixed temperatu

l

of
e
v-

d-

FIG. 3. Variation of interface position. The unperturbed inte
face position is identified by the pointsx0 . This interface is per-
turbed to a positionx01ehn. Then the variational derivative ofF
is computed to find the minimum.
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PRE 60 713THERMODYNAMIC BASIS FOR A VARIATIONAL MODEL . . .
field has on the computation is that it changes the interfa
boundary condition for the compositional field.

The frozen temperature approximation is a reasonable
proximation that greatly simplifies calculations of direction
solidification shapes, and includes enough of the impor
physics to display complex cellular morphologies similar
those observed in experiments. In particular, the parameteM
is recognized to be precisely the bifurcation parameter
enters morphological stability theory for the limiting case
constitutional supercooling@23#.

D. Correspondence between variational and standard sharp
interface models

We choose a reasonable scheme for distributing the
leased heat or solute due to motion of the interface,
demonstrate that in the limit of smallDt, the boundary con-
ditions maintained by the variational model are the same
those that are imposed in the standard sharp interface m

The conservation condition, Eq.~7!, that constrains the
minimization in the variational model, is not specific abo
how the released potential from the moving interface sho
be distributed into the volumeV. A sensible way of distrib-
uting the latent heat in the case of a pure material was s
gested previously@7# and will be used here.

A minimization step is used to update the interface po
tion from time t to time t1Dt, whereDt is a small time
interval. The motion of the interfaceVnDt will bring about a
change in the potentialu in the neighborhood of the movin
interface according to Eq.~7!. Assuming that the distribution
of the released heat or solute is determined by the diffus
equation, the maximum distance that the released pote
can diffuse is of the order ofADt.

A heat kernel can be used to compute the change in
potential field resulting from interface motion. The interfa
is a source of magnitudeVnDt, so the change in chemica
potential atx2 can be computed from

Du~x2!5E
AS,L

G~ ux12x2u,Dt !Vn~x1!Dtdx1 , ~58!

where the function

G~ ux12x2u,Dt !5~4pDt !2~n/2! expF2
ux12x2u2

4Dt G ~59!

is a heat kernel, andn is the dimensionality of the space. On
can verify that this choice ofDu satisfies Eq.~7! by integrat-
ing Eq. ~58! over the volume, and observing thatG is nor-
malized to one. Du is negligible for ux12x2u.2ADt.
Therefore, the volumeV that is affected by the motion of th
interface is small, for smallDt.

By choosing a configuration of the interface and allowi
a local normal variation of that configuration near a pointx0
~see Fig. 3! one can compute a variation inF, subject to
conservation of energy in the form~58!. One can determine
the actual interfacial configuration by setting the variati
equal to zero, which will be true whenF is a minimum.
Then, the boundary condition in the limit can be determin
by taking the limit of this configuration asDt approaches
zero.
al
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The interface position will be identified byx0 and the
interface configuration byx01ehn, whereh is a function
defined onx0 , n is the unit normal vector pointing into th
liquid, ande is a small parameter. The variationdF using the
linear form for f given in Eq.~25!, can be computed as fol
lows:

dF5dE
V

f dV1dE
AS,L

f xsdA. ~60!

Evaluating the volume part of this variation first, one find

dE
V

f dV5
1

2 F E
VS

d~u2ũ!dV2E
VL

d~u2ũ!GdV

1E
AS,L

~u2ũ!ehdA

5
1

2 H E
VSF EAS,L

GehdAGdV

2E
VLF EAS,L

GehdAGdVJ
1E

AS,L
@~u2ũ!#ehdA, ~61!

wheredA is a differential element of area. The second te
in Eq. ~60! can be computed to be

dE
AS,L

f xsdA5E
AS,L

~ f xs1 f uu
xs!ehKdA, ~62!

where it has been assumed thatf xs(u) does not change ex
plicitly during the variation. In the limit asDt→0, the range
of G becomes small compared to the radius of curvature
the interface, and the volume integrals in Eq.~61! cancel.
SettingdF50 to find the minimum configuration, one find

u2ũ52~ f xs1 f uu
xs!K, ~63!

which is the Gibbs-Thomson condition, Eq.~3!, as it is writ-
ten for the standard sharp interface model. Therefore,
small Dt, the two models should give similar results. Vari
tional simulations have been tested by showing that
simulation produces solutions that agree with some ana
cal solutions found by solving standard sharp interface m
els. A simulation@24# of the process of directional solidifi
cation using the vibrational algorithm predicted the critic
conditions for morphological stability that agree which an
lytical solutions for the critical conditions calculated fro
sharp interface models@23#. In another implementation of a
variational simulation, parabolic dendrites were compu
for which the tip curvatures and Peclet numbers agreed w
the values predicted by Ivantsov@25#.

IV. CONCLUSIONS

In this paper, variational models for solidification are d
rived by using the principles of nonequilibrium thermod
namics. Laws of conservation and entropy production lea
the equations that are summarized in Sec. I. Variational p
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714 PRE 60JOHNSON, SEKERKA, AND ALMGREN
ciples are obtained for two different physical systems:
free growth of a pure material into a supercooled melt, a
the directional solidification of a binary mixture. In bot
cases, two different expressions for the relevant free-ene
density are found: a quadratic form, and a linear form. T
quadratic form does not require the neglect of terms suc
the second term in Eq.~26!, and is also associated with
global minimizer for the entire variational algorithm. Varia
tional models had been used previously on the basis of t
mathematical connection to standard sharp interface mod
The derivations that are presented here provide a direct
between those models and irreversible thermodynamics.

These variational models provide an alternative appro
for modeling the process of solidification. Several model
assumptions that can limit their applicability were necessa
The system is assumed to be symmetric in that the trans
coefficients are equal in solid and liquid. For thermal tra
port this is reasonable, but for the diffusion of material, t
approximation is inappropriate in most cases. The fro
ys

D

e
d

gy
e
as

ir
ls.
k

h
g
y.
ort
-
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temperature approximation can be used to simplify the c
culation for the binary mixture.

A computational advantage of the variational approa
over standard sharp interface model is that the curvature d
not need to be computed directly. Using a simulation ba
on the variational model@7,24#, one can employ relatively
coarse meshes to compute the evolution of crystal sha
Another advantage is that the variational approach incor
rates thermodynamic laws more directly through the minim
zation of an energy, as opposed to assigning a bound
condition whose value was determined separately by su
minimization.
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